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Module 3: Analysis of Strain

3.2.1 MOHR’S CIRCLE FOR STRAIN

The Mohr’s circle for strain is drawn and that the construction technique does not differ from
that of Mohr’s circle for stress. In Mohr’s circle for strain, the normal strains are plotted on

the horizontal axis, positive to right. When the shear strain is positive, the point representing
the x-axis strains is plotted at a distance % below the &-line; and the y-axis point a distance

% above the &-line; and vice versa when the shear strain is negative.

By analogy with stress, the principal strain directions are found from the equations

yxy

tan 20 = (3.19)

x_gy

Similarly, the magnitudes of the principal strains are

2 2
g, +e g, —¢ 14
=X Y 4 LSS By S A 3.20

3.2.2 EQUATIONS OF COMPATABILITY FOR STRAIN

Expressions of compatibility have both mathematical and physical significance. From a
mathematical point of view, they assert that the displacements u, v, w are single valued and
continuous functions. Physically, this means that the body must be pieced together.

The kinematic relations given by Equation (3.3) connect six components of strain to only
three components of displacement. One cannot therefore arbitrarily specify all of the strains
as functions of X, Yy, z. As the strains are not independent of one another, in what way they
are related? In two dimensional strain, differentiation of & twice with respect to y, g, twice
with respect to X, and y, with respect to X and y results in

o%,  ou 0%, %

oF ooyt oxt ooy

%y, O A
oxoy — oxoy:  ox’oy

(3.21)
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This is the condition of compatibility of the two dimensional problem, expressed in terms of
strain. The three-dimensional equations of compatibility are derived in a similar manner:

Thus, in order to ensure a single-valued, continuous solution for the displacement
components, certain restrictions have to be imposed on the strain components.
These resulting equations are termed the compatibility equations.

Suppose if we consider a triangle ABC before straining a body [Figure 3.4(a)] then the same
triangle may take up one of the two possible positions Figure 3.4(b) and Figure 3.4(c)) after
straining, if an arbitrary strain field is specified. A gap or an overlapping may occur, unless
the specified strain field obeys the necessary compatibility conditions.

(Z,i DXC
A B A B

(@) (b) (c)

Fig. 3.4 Strain in a body

Now,
ou
=— 3.23
= 5 (3.23)
g =% (3.232)
oy
g =W (3.230)
oz
Vg = N, (3.23c)
ox oy
Yy = o, N (3.23d)
oy oz
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ou ow
= — 4 —
0z 0OX
Differentiating Equation (3.23) with respect to y and Equation (3.23a) with respect to x
twice, we get
0%, 0o
oy?  oxoy®
828y B o%v
X2 oyox’
Adding Equations (3.23f) and (3.23g), we get
o%, 0%, ou o
2 T2 T 2T 2
oy OX oxoy“®  0oyox
Taking the derivative of Equation (3.23c) with respect to x and y together, we get
%, 0% . o%u
Oxoy  Oyox*  oxoy?
From equations (3.23h) and (3.23i), we get
o’e, 828y 827/Xy
2 T2 T
oy OX oxoy
Similarly, we can get
628y N 6252 _ azyyz
oz oy oyor
2 2 2
0, 08 _07x (3.231)
OX 0z OXoz
Now, take the mixed derivative of Equation (3.23) with respect to z and v,
o%s,  ou
= (3.23m)
0yoz  Oxoyoz

And taking the partial derivative of Equation (3.23c) with respect to z and X, we get

Y (3236)

(3.23f)

(3.23g)

(3.23h)

(3.23i)

(3.23))

(3.23K)

vy 8% .\ o%v
OX0z  OX0yor  Ozox?

Also taking the partial derivative of Equation (3.23d) with respect to X twice, we get

(3.23n)

%y, w o
P Xy | oxler (3.23)
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And take the derivative of Equation (3.23e) with respect to y and X

%y, 0% N o*w

OX0y — OXoyoz  ox*oy

Now, adding Equations (3.23n) and (3.23q) and subtracting Equation (3.23p), we get

Thus,

(3.23q)

P 2 02 3
_ ”zvz L0 Oy 207U (3.231)
OX OXO0y  OX0z  OXoyoz
By using Equation (3.23m), we get
2 2 i a z a X
0%, _ 0| 01y +8sz LT (3.235)
oyoz ox| ox oy oz
Similarly, we can get
20%s i 0 0
y _ 0| OV Ty Ty (3.231)
oxoz oy i oy 0z OX
2 0 0
20 &, :g . 7/xy n 7/yz + a7/zx (323U)
oxoy oz 574 OX oy

Thus the following are the six compatibility equations for a three dimensional system.
828X n 82‘9y _ azyxy

oy>  ox*  oxoy

623y N 8252 _ 627/yz

oz oy*  oyoz

o%s, 0%, 0%,

2 T2 T

OX 0z 020X
2628)( 8 [_ 67/yz + 6}/)(2 n 67/xy]

(3.24)

oyoz x|\ ox oy oz
2825y :i ﬁyyz _8;/2)( N 8}/Xy
0zox oy ox oy 0z
28282 _i 67/)’2 + 6yzx _ 67/Xy
oxoy  oz\ ox oy oz
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3.2.3 MEASUREMENT OF SURFACE STRAINS - STRAIN ROSETTES

Strain Rosettes

Whenever a material is subjected to plane stress, it is desirable to obtain the stresses by direct
measurement. As the stresses cannot be measured directly, it is essential to measure the
strains or deformation that takes place in the material during loading. These strains or
deformations are measured with sensitive strain gauges attached to the surface of the body
before it is loaded so that these gauges can record the amount of strain that takes place
during loading. It is more accurate and easier to measure in the neighbourhood of a chosen
point on the surface of the body, the linear strains in different directions and then compute

from these measurements the magnitudes and directions of the principal strains ¢, and ¢, .
Such a group of strain gauges is called a strain rosette.

Strain Transformation Laws

If the components of strain at a point in a body are represented as ¢,,&, and y,, with

reference to the rectangular co-ordinate axes OX and QY, then the strain components with
reference to a set of axes inclined at an angle 6 with axis OX can be expressed as

e, te, &y —E, Yy .

&y = + €0S 260 +—=sin 20 (3.25)

2 2 2
Yo = (gy —ax)sin 20 +y,,€0s20 (3.26)
and the principal strains are given by

e, e 1

gmax or gmin = ( 2 : ] + E\/(gx - gy)z + yfy (327)
The direction of the principal strains are defined by the angle 6 as
tan 20 = (y—yJ (3.28)

E &,

Also, the maximum shear strain at the point is given by following relation.
Vmax = \/(gx - 8y)2 + 7/)§y (3.29)

Measurement of Strains using Rosettes

In a rectangular rosette, the strains are measured at angles denoted by 6, = 0,60, = 45°and
0, = 90°. In an equiangular rosette (also called Delta Rosette)

6, =0°0,=60° 6,=120°

Let &,,&pand &, be the strains measured at three different angles 6, 6,and 6,

respectively. Now, using the section transformation laws, we can write the three
simultaneous equations as follows:
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e, t+é& E, — & .
g, =| ——>L |+| -2 |cos20, + "9 Sin 20,
' 2 2 2
e, +¢& E,—& .
g, =| ——= |+| ——2L|cos20, + " sin 20,
2 2 2 2
e, t+é& E, —& .
g, =| ——>|+| —2L|cos20, + " Sin 20,
’ 2 2 2

For a rectangular rosette,
0,=0, 6,=45"and 0, =90°

Substituting the above in equations (a), (b) and (c),
We get

+& E, —¢&
g, = LI U ) Y
2 2

:%(8)( +8y +&, —8y)

+ —
Also, &g, = I P e (cos180°)+ A
2 2 2

SEgy = &,
Therefore, the components of strain are given by

E,. =€y, &,=€
X or Ty %° and ny:2545_(50+890)

For an equiangular rosette,
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0,=0, 0,= 60°, 0, =120°
Substituting the above values in (a), (b) and (c), we get
g

1
x —€gr &y 25(2860 + 265 _go)

2
and y,, = ﬁ(geo _‘9120)

Hence, using the values of &, &, and y, , the principal strains ¢, and &, can be
computed.

3.2.4 NUMERICAL EXAMPLES

Example 3.1
A sheet of metal is deformed uniformly in its own plane that the strain components

related to a set of axes Xy are
& =-200x10°
& =1000x10°
%y = 900x10°

(a) Find the strain components associated with a set of axes X'y’ inclined at an angle of

30° clockwise to the X y set as shown in the Figure 3.5. Also find the principal
strains and the direction of the axes on which they act.

y !
A y
30°
» X
30°
X/
Figure 3.5
7
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Solution: (a)
The transformation equations for strains similar to that for stresses can be written as below:

e, +e& E,—&
g,= ——2L+2—7 c0s26+ 7% sin20
2 2
e, t+e& E, —&
go= 28 5Ty 0he09. 9 ginog
Y 2 2

Ty o[58 lgin2g+ 1 cos26
2 2 2

Using Equation (3.19), we find

20=tan* (@j = 36.8°
600

Radius of Mohr’s circle =R = \/(600)2 +(450)* =750
Therefore,
£,= (400x10°° ) (750 10 )cos(60° - 36.8°)
= -290x10°°
¢, = (400x10°° )+ (750 10 )cos(60° - 36.8°)

=1090x10°°
Because point X' lies above the ¢ axis and point y’ below & axis, the shear strain Yy 1S
negative.
Therefore,
“z'y' = — (750 x10°° )sin(60° — 36.8°)

=-295%10"°
hence, y,, = —590x10°

Solution: (b)
From the Mohr’s circle of strain, the Principal strains are

g, =1150x10°°
£, =—350x10"°
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Figure 3.6 Construction of Mohr’s strain circle
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The directions of the principal axes of strain are shown in figure below.

y

71.6°

» X

Figure 3.7

Example 3.2
By means of strain rosette, the following strains were recorded during the test on a
structural member.

g, =—13x10°mm/mm, g, = 7.5x10°mm/mm, g4, =13x10°mm/mm

Determine (a) magnitude of principal strains
(b) Orientation of principal planes

Solution: (a) We have for a rectangular strain rosette the following:

&y =& &y =&y Y xy :2‘945_(50+‘990)

Substituting the values in the above relations, we get

¢, =—13x10° ¢, =13x10"°

Yy =2x75x10° —(-12x10° +13x10°) .. y, =15x10°°

The principal strains can be determined from the following relation.

SX+8 1 2
gmax or gmin :[ 2 y]ig\/(gx—gy) +7fy

fe Of e = ($j106 " %\/ [(-13-13p0°F + 15x10°)

L OF & =+15x107°

max

10
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Hence &, =15x10° and ¢, =—15x107°

(b) The orientation of the principal strains can be obtained from the following relation
Y xy

&y —E&,
15x10°°

(-13-13)10°

tan 20 = -0.577

.20 =150°

0 =T5°

Hence the directions of the principal planes are 6, = 75° and 0, =165°

tan 20 =

Example 3.3
Data taken from a 45° strain rosette reads as follows:
&, = 150 micrometres/m

&, =—110 micrometres/m
&qgo = 210 micrometres/m
Find the magnitudes and directions of principal strains.

Solution: Given &, = 750x10°°
€4 =-110x107°

£qp =210x107°
Now, for a rectangular rosette,

g, =&, =150x107°

£, = €9 =210x10°°
Vi = 2845 (g0 +60)

— 2(-110x10° )~ (750x10°® + 210x10°°)
¥,y =—1180x107°

.. The magnitudes of principal strains are

X 1
8max or € min :(g ;gyjiz\/( X _8y)2 +7§y

11
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750+ 210

ie, . or gmm_(Tj - 1\/ (75021000 +[(- 118000

= 480x10°° i%(1297.7)10-6

=480x10"° +648.85x10°
€y =& =1128.85x107°

max

e =¢,=-168.85x10"°

min

The directions of the principal strains are given by the relation

Y xy

x_gy

B -6
tan2g = —1180x10° _ , oe

(750 - 210)10°°

tan 20 =

.20 =114.6°

-0, =57.3" and 0, =147.3°
Example 3.4
If the displacement field in a body is specified as u = (X2 + 3) 1073, v =3y?zx1073

w=(x+32)x10, determine the strain components at a point whose coordinates
are (1,2,3)

Solution: From Equation (3.3), we have

e =M _oxx107,
OX

g, :@:6yz x1072,
oy

g =M _3.10°
oz

12
Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



Module3/Lesson2

v :{%(3y22x10"3)+%(x+3z)x10"3}
Yy = 3y?x107°

and y, = {%(x +3z)10°° +%(x2 + 3)103}

7/ZX :1X1073

Therefore at point (1, 2, 3), we get

&, = 2><10’3,8y =6x2x3x107° = 36X1073,82 =3x107,

7xy = O'yyz =12 ><1073’7/zx = 1X1073

Example 3.5

The strain components at a point with respect to x y z co-ordinate system are
¢, =0.10, ¢, =0.20,¢, =0.30,7,, =7,, =7,, =0.160

If the coordinate axes are rotated about the z-axis through 45° in the anticlockwise
direction, determine the new strain components.

Solution: Direction cosines

z(z")
X y z A
X [ 1 |1 |o y’
J2 V2
y |1 |1 |0
J2 |2
»
|0 0 1 y
1 1
Here L, =—, m =———, n, =0 0
1 \/5 i \/5 i 45
| —i m —i n.=0 '
2 \/E, 2 \/E’ 2 v X
l,=0, m=0, n;=1 X
Now, we have, Figure 3.8

13
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11
x/§1 \/15 01 008 0.08
alle]l=|-— —— o0l/008 02 008
[a][e] 5 7
5° 5 1llo.08 008 03
i ]

0.127 0.198 0.113
=|-0.014 008 O
0.08 008 03

1 1
B )

(0127 0.198 0.113 \/15 1/5
[¢]=|-0014 0085 0 |-~ —=—= O
| 008 008 03 J()E */05 1

(023 005 0.113
[¢]=| 0,06 007 ©
10113 03 03

Therefore, the new strain components are

£,=023 ¢ =007, ¢ =03

%yw =0.05 or y,, =0.05x2=0.1

Yy =0, 7,=0113x2=0.226

Example 3.6
The components of strain at a point in a body are as follows:

=01 ¢, =-005 ¢,=005 y,=03 y,=0L y,=-008

y
Determine the principal strains and the principal directions.

Solution: The strain tensor is given by

14
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_g }/Xy }/xzT
202 01 015 -0.04
& = 72XY g, yzﬂ -[ 015 -005 005
e 'r | ~004 005 005

i 27

The invariants of strain tensor are
J,=¢,+¢,+¢,=01-0.05+0.05=0.1

J. = 1( 2 2 2 )
2 —€X€y+€ygz+828X—Z}/ ww Y v +Y

=(0.1)(~0.05)+ (-~ 0.05)(0.05)+ (0.05)(0.1)—% (0.3)° +(0.2)* + (- 0.08)2]

- J,=-0.0291

13 =(0.0)(- 0.05)(0.05)+%[(0.3)(0.1)(—0.08)—0.1(0.1)2 +0.05(0.08)2 —0.05(0.3)2]
J, =—0.002145

.. The cubic equation is
g®—0.16* —0.0291¢ + 0.002145 =0 (i)

Now c0s 36 = 4cos® 6 — 3cosd

Or cos® 6 —Ecose —300539 =0 (ii)
4 4
Jl
Let ¢ = rcos(9+?

:r0050+E
3

g=rcosd +0.033
.. (i) can be written as

2_ 0.0291(r cos @ +0.033)+0.002145 = 0

2

(rcos6 +0.033)° —0.1(r cosd +0.033)

2

(rcos@ +0.033)(r cosd +0.033) —0.1(r cosd +0.033)“ —0.0291r cos O

—0.00096 +0.002145=0

15
Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



Module3/Lesson2

( cos6 +0.033)(r2 cos 0 + 0.067r cos +0.00109)
~0.1(r? cos2 0+ 0.067r cos6 + 0.00109)0.0291r cosd — 0.00096 +0.002145 = 0

r3cosS 0 +0.067r2 cos? § +0.00109r cos@ + 0.033r 2 cos2 & +0.0022r cos O +

0.000036 — 0.1r 2 cos2 6 — 0.0067r cosé — 0.000109 — 0.0291r cosé — 0.00096 +
0.002145=0

ie. r3cosS0—0.03251r cosd —0.00112 = 0

or cos° 60— 0'032510038 _ 000112 =0 (iii)
2 3
r r
Hence Equations (ii) and (iii) are identical if
0.03251 E
r’ 4

1= (PO

cos30 0.00112
and =

4 r
or cos30 = PXOOZ_ 4 406~ 05
(0.2082)
.30 =60° or 6, = 6—: =20°
6, =100° 0, =140°

J
. & =T1,C086, +?1
=0.2082¢0s20° + %
g, =0.228

£, =1,C080, + 3_31 =0.2082¢c0s100° + % =-0.0031

&5 = I,C0OS0, + ‘]—31 =0.2082 cos140° + % =-0.126

16
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To find principal directions

(@) Principal direction for &,

(0.1-¢) 0.15 ~0.04

015 (-0.05-¢g) 0.5
~0.04 0.05 (0.05-¢,)
[(0.1-0.228) 0.15 ~0.04
=| 015 (-0.05-0.228) 0.05
~0.04 0.05 (0.05-0.228)

~0128 045 —0.04
-| 015 -0278 005
| -004 005 -0.178

-0.278 0.05
Now, = =(-0.278)(—0.178)-(0.05)(0.05
o &= oy~ 028)-0.78)- 005)009)
- A, =0.046984
0.15 0.05
B, =— =-0.1 -0.17 . .04
. ‘_0.04 _0.178‘ [0.15x (- 0.178) +(0.05)(0.04)]
. B, =0.0247
015 -0.278
L= =0.15x0.05-0.278 x 0.04
‘—0.04 0.05 ‘
..C, =-0.00362

JAZ +B7 +C? =/(0.046984)° +(0.0247)° +(~0.00362)’

= 0.0532
o A 0046984
-, S iaiior oo —0.883
Al + 1 + 1
B, _0.0247 _ e

M 7 7 00532
JAZ+BZ+C? O

17
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. C, _-0.00362 _ oo

\/A12 n 812 i C12 0.0532

Similarly, the principal directions for ¢, can be determined as follows:

(0.1+0.0031) 0.15 —0.04
0.15 (- 0.05+0.0031) 0.05
—0.04 0.05 (0.05+0.0031)

0.1031  0.15 -0.04
=| 0.15 -0.0469 0.05
—-0.04 0.05 0.0531

~0.0469 0.05
A, = =—0.00249 — 0.0025 = —0.00499
0.05  0.053
015 0.05
B, = = —(0.007965 + 0.002) = —0.009965
~0.04 0.053
0.15 —0.0469
C, = =0.0075-0.00188 = 0.00562
-0.04 0.5
Now, /A, +B,% +C,? =+/(—0.00499)? + (— 0.009965)° +(0.00562)° = 0.0125
oy = A _ —000499 _ 4 399
m, = B, _ —0.009965 _ o
- C, _0.00562 _ .
And for g, = -0.126
(0.1+0.126) 0.15 ~0.04
0.15 (- 0.05+0.126) 0.05
~0.04 0.05 (0.05+0.126

0.226 0.15 -0.04
=1 0.15 0.076 0.05
-0.04 0.05 0.176

18
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0.076 0.05
Now, A, = =0.0134-0.0025 = 0.0109
0.05 0.176
0.15 0.05
3 = =—(0.0264 + 0.002) = —0.0284
—-0.04 0.176
0.15 0.076

3 =— =0.0075+0.00304 = 0.01054
-0.04 0.05

Now, y/A;> + B +C,? =+/(0.0109)* + (- 0.0284) + (0.01054)* = 0.0322

L A, _0.0109 _ 400
P JAZ+BZic2 00322
. B, _ 00284 _ oo,
: JAZ+BZ+C2  0.0822 '
- C, _0.01054 _

JA; +B2+C2 00322

Example 3.7
The displacement components in a strained body are as follows:

u=0.01xy +0.02y*,v = 0.02x* + 0.01z°y,w = 0.01xy* + 0.05z°
Determine the strain matrix at the point P (3,2, -5)

Solution: ¢, :a—u: 0.01y

OX

€, =%: 0.01z°

g, _w_ 0.1z
0z

Y :@-Fa—u: 0.04x+0.01x+0.04y
oX oy

Yy = mL N 0.02xy +0.03z%y
oy oz
ou ow )

=—+—=0+0.01
7/ZX az ax y

At point P (3, 2, -5), the strain components are
e, =002, &, ,=-125 ¢,=-05

v, =023 y,=162, y, =004

19
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Now, the strain tensor is given by

PR SO
X 2 Yy 2 Y x2
RE 1
8IJ E}/yx gy Esz
1 1 .
27/zx Zyzy z J

Stra_in matrix becomes
[0.02 0.115 0.02

g =10115 -1.25 081
| 0.02 081 -0.50

Example 3.8

The strain tensor at a point in a body is given by

0.0001 0.0002 0.0005
g; =|0.0002 0.0003 0.0004
0.0005 0.0004 0.0005

Module3/Lesson2

Determine (a) octahedral normal and shearing strains. (b) Deviator and Spherical

strain tensors.

Solution: For the octahedral plane, the direction cosinesare | =m=n=

(a) octahedral normal strain is given by

2 2 2
(€0 ) = &% +&,m> + 2,0 +2(g, M+ ,mn+g,nl)

y

1 1 1
Here Exy :ny)” &y, :Eyyz and € :E}/

&

2 2
1 1
- le, )., =0.000] —| +0.0003 — | +0.0005
( )oct J{ /sj ( j ( 3

[EEN

foso oo

- (&,),4 =0.001

w

Octahedral Shearing Strain is given by

Voot = 2\/(8R )ict - (Sn )ict

where (&, )o = ResUltant strain on octahedral plane

Applied Elasticity for Engineers
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1 > > 2]
o (8r)o = \/g[(gx +&, +8xz) +(€xy +é, +syz) +(<9XZ +é&,, +sy)

= \/% [(0.0001+ 0.0002 +0.0005) +(0.0002 + 0.0003 + 0.0004)*(0.0005 + 0.0004 + 0.0005 )’ ]

“(eg),, =0.001066
Vo = 24/(0.00106) — (0.001)?

¥4 =0.000739

(b) Deviator and Spherical strain tensors.

Here Mean Strain= ¢ = w
0.0001 +0.0003 + 0.0005
B 3
- &, =0.0003
(0.0001-0.0003) 0.0002 0.0005
. Deviator Strain tensor = 0.0002 (0.0003-0.0003) 0.0004
0.0005 0.0004 (0.0005 - 0.0003)
—0.0002 0.0002 0.0005
ie., E'=| 0.0002 0  0.0004
0.0005 0.0004 0.0002
e, 0 O
and spherical straintensor= E"=| 0 ¢, O
0 0 g,
0.0003 0 0
ie., E'=| 0 00003 O
0 0  0.0003

Example 3.9
The components of strain at a point in a body are as follows:

g, = clz(x2 + y2)
_u2
£, =X12
7/xy = 202 XyZ
where ¢; and C, are constants. Check whether the strain field is compatible one?
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Solution: For the compatibility condition of the strain field, the system of strains must

satisfy the compatibility equations
828X n 82“:"y _ 82?/xy

oy>  ox*  oxoy

Now, using the given strain field,

oe, 0%,
=2c,yz, =2c,z

8y2
2
Sy

ie.,

o€ 0
OX ox®

oy Xy
oxoy

=27

=2c,yz, =2C,Z
828y
+—F=2¢,2+2z =2z(1+c,) and

Sy ox

D% 828y 0%y
Since —-+—-#

oy OX OXoy
Example 3.10

2
=2¢,2

OXoy

Y the strain field is not compatible.

Under what conditions are the following expressions for the components of strain at a

point compatible?
g, = 2axy’ + by’ + 2cxy
g, = ax” +bx

Vi =Xy + Py +ax® +ny

Solution: For compatibility, the strain components must satisfy the compatibility equation.

. 628)( 62gy _ 827/><y
e, — +—5 =
oy OX oxoy
825X azgy 82yxy
or — >~ =0
oy OX OXoy
Now, &, = 2axy* +by? + 2cxy
" 6;; = 4axy + 2by + 2cx
2
aaygzx =4ax +2b
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g, = ax? +bx

6gy
—2 =2ax+b
OX
0%¢
2 =2a
OX

Y =Xy + PXy +ax® +ny

97
= 20Xy + Py + 2ax
OX
62
Ty _ 20X+ B
OXoy
.. (i) becomes

4ax+2b +2a =20x+ f
4ax +2(a+b)=2ax+

codax = 2ax
or o =2a
and B =2(a+b)

Example 3.11
For the given displacement field
u= c(x2 + 2x)
V= c(4x+2y2 + z)
w = 4cz?
where ¢ is a very small constant, determine the strain at (2,1,3), in the direction
oLt 1
L 22
Solution: ¢, = A =20%, Yy = @+a—u =4c+0=4c
OX ox oy
g, —ﬂ:4cy, Y v —@+@:O+c:c
oy oz
g, :@:802, Y :a_qu@: 2c+0=2c
0z 0z OX
. At point (2,1,3),
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g =2cx2=4c, y, =4c
e, =4cxl=4c, y,=c
g, =8cx3=24c, y,=2C
. L 1 1 . .
.. The Resultant strain in the direction | =0, m=——=, n=—= isgiven by
V2 2

e =¢l+e,m*+en’ +y Im+y mn+y,nl

=0+ 40(— %jz + 24{%) +4¢(0)+ c(— %} (%j +2¢(0)

~g, =13.5¢

2

Example 3.12
The strain components at a point are given by

€, =001 ¢ =-0.02, ¢ =003, y, =0.015, y, =0.02, y,, =-0.01
Determine the normal and shearing strains on the octahedral plane.

Solution: An octahedral plane is one which is inclined equally to the three principal
1

1 1
V3’4343
Now, the normal strain on the octahedral plane is

(€0)o = &% +&,m* +£,n* +y, Im+y ,mn+y,nl

= %[0.01—0.02+ 0.03+0.015+0.02 - 0.01]

< (&,)oq =0.015
The strain tensor can be written as

co-ordinates. Its direction cosines are

0oy 0015 001
& &y &y ' 2 2 0.01 0.0075 —0.005
Ey & &y |= g -0.02 0'—22 = 0.0075 -0.02 0.01
g, €, € -0.005 0.01  0.03
w Eyn & _0.;)1 0.22 0.03

Now, the resultant strain on the octahedral plane is given by

1 2 2 2
(SR)oct :\/g{(gx +gxy +gxz) +(gxy +8y +gyz) +(gxz +gyz +gz) }

= \/%{(o.ou 0.0075-0.005)” + (0.0075—0.02 + 0.01) + (— 0.005 +0.01 + 0.03)2}

=+/0.0004625
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< (er),q =0.0215
and octahedral shearing strain is given by

(). = 2y(ex ' — (e, )} =2¢/(0.0215) —(0.015)’
< (£g),y =0.031

Example 3.13
The displacement field is given by

u= K(x2 + 22), V= K(4x+ 2y° + z), w = 4Kz?
where K is a very small constant. What are the strains at (2,2,3) in directions

1 1
a)l=0, m=—, n=—, (b)I=1, m=n=0, (c)l=0.6, m=0, n=0.8
@) N N (b) ()
Solution: ¢, __ 2Kx, ¢, =ﬂ:4Ky, €, :a—W:SKz

OX oy 0z

7/Xy=@+a—u:4K+O:4K

ox oy

yy22%+@:0+K:K
oy oz

yzx:a_u+%:2K+0:2K
o0z oOX

.. At point (2,2,3),
e, =4K, ¢,=8K, ¢,=24K

Y =4K,y, =Ky, =2K
Now, the strain in any direction is given by
g =gl +em*+e,n* +y Im+y,mn+y,nl (i)

Case (a)
Substituting the values in expression (i), we get

€ = 4K(0)+8K(%)2 + 24K(%)2 +4K(0)+ K(%](%] +2K(0)

sg =4K +12K +%K
sg, =16.5K

Case (b)
g, = 4K(1)* +8K(0)+24(0)+ 4K(0)+ K(0)+2K(0)
s =4K
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Case (c)
g, =4K(0.6)" +8K(0)+24(0.8)° + 4K(0)+ K(0)+ 2K (0.8)(0.6)
g, =17.76K
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